f04 — Simultaneous Linear Equations f04bbc

NAG C Library Function Document

nag real band lin_solve (f04bbc)

1 Purpose

nag real band lin_solve (f04bbc) computes the solution to a real system of linear equations AX = B,
where 4 is an n by n band matrix, with k; subdiagonals and k, superdiagonals, and X and B are n by r
matrices. An estimate of the condition number of 4 and an error bound for the computed solution are also
returned.

2 Specification

#include <nag.h>
#include <nagf04.h>

void nag_real_band_lin_solve (Nag_OrderType order, Integer n, Integer Kkl,
Integer ku, Integer nrhs, double ab[], Integer pdab, Integer ipiv[],
double b[], Integer pdb, double *rcond, double *errbnd, NagError *fail)

3 Description

The LU decomposition with partial pivoting and row interchanges is used to factor 4 as A = PLU, where
P is a permutation matrix, L is the product of permutation matrices and unit lower triangular matrices with
k; subdiagonals, and U is upper triangular with (k; + k,) superdiagonals. The factored form of 4 is then
used to solve the system of equations AX = B.

4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A,
Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users’ Guide (3rd Edition) SIAM,
Philadelphia URL: http://www.netlib.org/lapack/lug

Higham N J (2002) Accuracy and Stability of Numerical Algorithms (2nd Edition) SIAM, Philadelphia

S Arguments
1: order — Nag OrderType Input

On entry: the order argument specifies the two-dimensional storage scheme being used, i.e., row-
major ordering or column-major ordering. C language defined storage is specified by
order = Nag RowMajor. See Section 2.2.1.4 of the Essential Introduction for a more detailed
explanation of the use of this argument.

Constraint. order = Nag_ RowMajor or Nag ColMajor.

2: n — Integer Input
On entry: the number of linear equations #, i.e., the order of the matrix 4.

Constraint: n > 0.

3: kl — Integer Input
On entry: the number of subdiagonals k;, within the band of 4.
Constraint: kl > 0.

[NP3660/8] f04bbe.1

f04bbc NAG C Library Manual

4: ku — Integer Input
On entry: the number of superdiagonals k,, within the band of 4.

Constraint: ku > 0.

5: nrhs — Integer Input
On entry: the number of right-hand sides r, i.e., the number of columns of the matrix B.

Constraint: nrhs > 0.

6: ab[dim| — double Input/Output
Note: the dimension, dim, of the array ab must be at least max(1, pdab x n).

On entry: the n by n matrix A. This is stored as a notional two-dimensional array with row
elements or column elements stored contiguously. The storage of elements a;;, for i =1,...,n and
j=max(1,i—k;),...,min(n,i + k,), depends on the order argument as follows:

if order = Nag_ColMajor, a; is stored as ab[(j — 1) x pdab + kl + ku + i — /];
if order = Nag_RowMajor, a; is stored as ab[(i — 1) x pdab + kl +; — i].

On exit: ab is overwritten by details of the factorization. The elements, u;, of the upper triangular

band factor U with k; + k,, super-diagonals, and the multipliers, /;;, used to form the lower triangular

factor L are stored. The elements uy;, fori=1,...,n and j =i,...,min(n,i+ k; + k,), and I;;, for
i=1,...,nandj=max(l,i —k;),...,i, are stored using the same storage scheme as described for
a; on entry.

7: pdab — Integer Input

On entry: the stride separating row or column elements (depending on the value of order) of the
matrix 4 in the array ab.

Constraint: pdab > 2 x kl 4 ku + 1.

8: ipiv[dim] — Integer Output
Note: the dimension, dim, of the array ipiv must be at least max(1,n).
On exit: if fail.code =, the pivot indices that define the permutation matrix P; at the ith step row i of
the matrix was interchanged with row ipiv[i — 1]. ipiv[i — 1] =/ indicates a row interchange was
not required.

9: b[dim| — double Input/Output
Note: the dimension, dim, of the array b must be at least

max(1, pdb x nrhs) when order = Nag_ColMajor;
max(1,pdb x n) when order = Nag_RowMajor.

If order = Nag_ColMajor, the (i,/)th element of the matrix B is stored in b[(j — 1) x pdb + i — 1].

If order = Nag RowMajor, the (i,j)th eclement of the matrix B is stored in
b[(i — 1) x pdb +/ — 1].

On entry: the n by r matrix of right-hand sides B.
On exit: if fail.code = NE_RCOND, the n by r solution matrix X.

10: pdb — Integer Input
On entry: the stride separating matrix row or column elements (depending on the value of order) in
the array b.
Constraints:

if order = Nag_ColMajor, pdb > max(1,n);
if order = Nag_RowMajor, pdb > max(1, nrhs).

f04bbc.2 [NP3660/8]

o1 -

11:

12:

13:

6

Simultaneous Linear Equations f04bbc

rcond — double * Output

On exit: if fail.code =, an estimate of the reciprocal of the condition number of the matrix 4,
computed as rcond = 1/(||A||1||A71||1).

errbnd — double * Output
On exit: if fail.code = NE_RCOND, an estimate of the forward error bound for a computed

solution X, such that ||x —x||,/[[x], < errbnd, where X is a column of the computed solution
returned in the array b and x is the corresponding column of the exact solution X. If rcond is less
than machine precision, then errbnd is returned as unity.

fail — NagError * Input/Output

The NAG error argument (see Section 2.6 of the Essential Introduction).

Error Indicators and Warnings

NE_ALLOC_FAIL

Internal memory allocation failed.

NE_BAD PARAM

On entry, argument (value) had an illegal value.

NE_INT

On entry, kl = (value).
Constraint: kI > 0.

On entry, ku = (value).
Constraint: ku > 0.

On entry, n = (value).
Constraint: n > 0.

On entry, nrhs = (value).
Constraint: max (1, nrhs) > 0.

On entry, nrhs = (value).
Constraint: nrhs > 0.

On entry, pdab = (value).
Constraint: pdab > 0.

On entry, pdb = (value).
Constraint: pdb > 0.

NE_INT 2

On entry,pdb = (value), n = (value).Constraint: pdb > max(1,n).

On entry, pdb = (value), nrhs = (value).
Constraint: pdb > max(1, nrhs).

NE_INT_3

On entry, pdab < 2 x kKl + ku + 1: pdab = (value), kl = (value), ku = (value).

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please consult NAG for assistance.

[NP3660/8] f04bbe.3

f04bbc NAG C Library Manual

NE_RCOND

A solution has been computed, but rcond is less than machine precision so that the matrix 4 is
numerically singular.

NE_SINGULAR

Diagonal element (value) of the upper triangular factor is zero. The factorization has been
completed, but the solution could not be computed.

7 Accuracy

The computed solution for a single right-hand side, X, satisfies an equation of the form

(A+E)x=0b,

where

1E][, = O(e) |4l
and e is the machine precision. An approximate error bound for the computed solution is given by

Il D

1[I 1414
where k(4) = ”Af1 I I[4]];, the condition number of 4 with respect to the solution of the linear equations.
nag_real_band_lin_solve (f04bbc) uses the approximation |E|, =€||4]|, to estimate errbnd. See

Section 4.4 of Anderson et al. (1999) for further details.

8 Further Comments

The band storage scheme for the array ab stored in Nag_ColMajor is illustrated by the following example,
when n =35, k; =2, and k, = 1. Storage of the band matrix 4 in the array ab:

Band matrix 4 Band storage in array ab
order = order =
a [23%) * * * + + * * ap [251) + +
k %k *
Ay dayp axp + + + Ay axp a3z + +
* *
az; dzy dzz dzg Ay Apz A3z4 Qg5 azy aszp azx azy +
* *
Ay Q43 Qa4 Ays ayy A4y 4zz Qa4 A4ss Ay Q43 Qg4 Qg5
* k k %k
ds3 ds4 dss ap; dzp Q43 dsy ds3 ds4 dss
% %
azy dg 4ds3

Array elements marked * need not be set and are not referenced by the function. Array elements marked +
need not be set, but are defined on exit from the function and contain the elements u;3, 14, Uy, Ups and
uzs. In this example when order = the first referenced element of ab is ab[3] = a;;; while for order =
the first referenced element is ab[2] = a;.

In general, elements a; are stored as follows:

if order =, a; are stored in ab[(j — 1) x pdab + Kkl + ku + i — j]
if order =, a; are stored in ab[(i — 1) x pdab + Kkl +j — i

where max(1,i — kl) <;j < min(n,i + Ku).

The total number of floating-point operations required to solve the equations AX = B depends upon the
pivoting required, but if n>> k; + k, then it is approximately bounded by O(nk,(k;+k,)) for the
factorization and O(n(2k; + k,)r) for the solution following the factorization. The condition number
estimation typically requires between four and five solves and never more than eleven solves, following the
factorization.

f04bbe.4 [NP3660/8]

f04 — Simultaneous Linear Equations f04bbc

In practice the condition number estimator is very reliable, but it can underestimate the true condition
number; see Section 15.3 of Higham (2002) for further details.

The complex analogue of nag real band lin_solve (f04bbc) is nag complex band lin_solve (f04cbc).

9 Example
This example solves the equations
AX = B,
where 4 is the band matrix
—0.23 2.54 -3.66 0 442 -36.01
4 — —6.98 246 -2.73 -2.13 and B 27.13 -=31.67
- 0 256 246 4.07 | —6.14 —1.16
0 0 —4.78 -3.82 10.50 —25.82

An estimate of the condition number of 4 and an approximate error bound for the computed solutions are
also printed.

9.1 Program Text

/* nag_real_band_lin_solve (f£04bbc) Example Program.
*

* Copyright 2004 Numerical Algorithms Group.
*

* Mark 8, 2004.

*/

#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagf04.h>
#include <nagx04.h>

int main(void)

{

/* Scalars */
double errbnd, rcond;
Integer exit_status, i, j, k1, ku, n, nrhs, pdab, pdb;

/* Arrays */
double *ab=0, *b=0;
Integer *ipiv=0;

/* Nag Types */
NagError fail;
Nag_OrderType order;

#ifdef NAG_COLUMN_MAJOR
#define AB(I,J) ab[(J-1)*pdab + k1 + ku + I - J]
#define B(I,J) b[(J-1)*pdb + I - 1]
order = Nag_ColMajor;
#else
#define AB(I,J) ab[(I-1)*pdab + k1 + J - I]
#define B(I,J) b[(I-1)%pdb + J - 1]
order = Nag_RowMajor;
#endif

exit_status = 0;
INIT_FAIL(fail);
Vprintf ("nag_real_band_lin_solve (f04bbc) Example Program Results\n\n");

/* Skip heading in data file */
Vscanf ("s*[*\n] ");

[NP3660/8] f04bbe.5

f04bbe

Vscanf ("%1d%1d%s1ds1ds*["\n] ",
&n, &kl, &ku, &nrhs);
if (n >= 0 && k1 >=0 && ku >=0 && nrhs >=0)
{
/* Allocate memory */
if (!(ab = NAG_ALLOC((2*kl+ku+1l)#*n, double)) ||
! (b = NAG_ALLOC(n*nrhs, double)) ||
! (ipiv = NAG_ALLOC(n, Integer)))

{
Vprintf ("Allocation failure\n");
exit_status = -1;
goto END;

¥

pdab = 2xkl+ku+l;
#ifdef NAG_COLUMN_MAJOR

NAG C Library Manual

pdb = n;
#else
pdb = nrhs;
#endif
}
else
{
Vprintf ("ss\n", "One or more of nmax, kl, ku or nrhs is"
" too small");
exit_status = 1;
return exit_status;
}
/* Read A and B from data file =*/
for (i = 1; i <= n; ++1i)
{
for (j = MAX(i - k1,1); j <= MIN(i + ku,n); ++3j)
{
Vscanf ("$1f", &AB(i,j));
b
}
Vscanf ("$*[*\n] ");
for (i = 1; 1 <= n; ++1)
{
for (j = 1; j <= nrhs; ++3j)
{
Vscanf ("$1f", &B(i,3));
¥
}
Vscanf ("$*[*\n] ");

/* Solve the equations AX = B for X */
/* nag_real_band_lin_solve (£f04bbc).

* Computes the solution and error-bound to a real banded

* system of linear equations

*/

nag_real_band_lin_solve(order, n, kl, ku, nrhs, ab, pdab,
pdb, &rcond, &errbnd, &fail);

if (fail.code == NE_NOERROR)
{

ipiv, b,

/* Print solution, estimate of condition number and approximate =*/

/* error bound */

/* nag_gen_real_mat_print (xO4cac).
* Print real general matrix (easy-to-use)

*/

nag_gen_real_mat_print(order, Nag _GeneralMatrix, Nag NonUnitDiag,

n, nrhs, b, pdb, "Solution",

if (fail.code != NE_NOERROR)
{

&fail);

Vprintf ("Error from nag_gen_real mat_print (x0O4cac).\n%s\n",

fail.message);
exit_status = 1;
goto END;
}

f04bbe.6

[NP3660/8]

f04 — Simultaneous Linear Equations

Vprintf ("\n%s\n%6s%9.le\n\n\n",
"Estimate of condition number", "", 1.0/rcond);

Vprintf ("%$s\n%6s%9.le\n\n",

"Estimate of error bound for computed solutions", "",
errbnd) ;
}
else if (fail.code == NE_RCOND)
{
/* Matrix A is numerically singular. Print estimate of */

/* reciprocal of condition number and solution =*/
Vprintf ("\n") ;
Vprintf ("%$s\n%6s%9.le\n\n\n",
"Estimate of reciprocal of condition number",
/* nag_gen_real _mat_print (x04cac), see above. */
nag_gen_real_mat_print(order, Nag _GeneralMatrix, Nag NonUnitDiag,
n, nrhs, b, pdb, "Solution", 0, &fail);
if (fail.code != NE_NOERROR)
{
Vprintf ("Error from nag_gen_real mat_print (x0O4cac).\n%s\n",
fail.message);

nn
4

exit_status = 1;
goto END;
}
}
else if (fail.code == NE_SINGULAR)
{
/* The upper triangular matrix U is exactly singular. Print */

3
END:
if
if
if

/* details of factorization */
Vprintf ("\n");
/* nag_band_real_mat_print (x04cec).

* Print real packed banded matrix (easy-to-use)

*/
nag_band_real_mat_print(order, n, n, k1, kl+ku, ab, pdab,

"Details of factorization", 0, &fail);
if (fail.code != NE_NOERROR)
{
Vprintf ("Error from nag_band_real mat_print (x04cec).\n%s\n",
fail.message);

exit_status = 1;
goto END;
¥
/* Print pivot indices */
Vprintf ("\n%s\n", "Pivot indices");
for (1 = 1; i <= n; ++1i)
{
Vprintf ("%111d%ss", ipiv[i - 1],
i%7 == 0 || i == n 2"\n":" ");
¥

Vprintf ("\n") ;

(ab) NAG_FREE (ab) ;
(b) NAG_FREE (b) ;
(ipiv) NAG_FREE (ipiv) ;

return exit_status;

[NP3660/8]

rcond) ;

f04bbe

f04bbe.7

f04bbe

9.2 Program Data

nag_real _band_lin_solve (f04bbc) Example Program Data
4 1 2 2 :Values of N, KL, KU and NRHS

-0.23 2.54 -3.66
-6.98 2.46 -=-2.73 -=-2.13
2.56 2.46 4.07
-4.78 -3.82 :End of matrix A

4.42 -36.01
27.13 -31.67

-6.14 -1.16
10.50 -25.82 :End of matrix B

9.3 Program Results

nag_real_band_lin_solve (f04bbc) Example Program Results

Solution

1 2
1 -2.0000 1.0000
2 3.0000 -4.0000
3 1.0000 7.0000
4 -4.0000 -2.0000

Estimate of condition number
5.6e+01

Estimate of error bound for computed solutions
6.3e-15

NAG C Library Manual

J04bbc.8 (last)

[NP3660/8]

	f04bbc
	1 Purpose
	2 Specification
	3 Description
	4 References
	5 Arguments
	order
	n
	kl
	ku
	nrhs
	ab
	pdab
	ipiv
	b
	pdb
	rcond
	errbnd
	fail

	6 Error Indicators and Warnings
	NE_ALLOC_FAIL
	NE_BAD_PARAM
	NE_INT
	NE_INT_2
	NE_INT_3
	NE_INTERNAL_ERROR
	NE_RCOND
	NE_SINGULAR

	7 Accuracy
	8 Further Comments
	9 Example
	9.1 Program Text
	9.2 Program Data
	9.3 Program Results

	NAG C Library Manual, Mark 8
	Introduction
	Essential Introduction
	Mark 8 News
	Library Contents
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines

	Indexes
	Implementation-specific Information
	a00 - Library Identification
	Chapter Introduction

	a02 - Complex Arithmetic
	Chapter Introduction

	c02 - Zeros of Polynomials
	Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	c06 - Fourier Transforms
	Chapter Introduction

	d01 - Quadrature
	Chapter Introduction

	d02 - Ordinary Differential Equations
	Chapter Introduction

	d03 - Partial Differential Equations
	Chapter Introduction

	d06 - Mesh Generation
	Chapter Introduction

	e01 - Interpolation
	Chapter Introduction

	e02 - Curve and Surface Fitting
	Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	Chapter Introduction

	f - Linear Algebra
	Chapter Introduction

	f01 - Matrix Factorizations
	Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	f03 - Determinants
	Chapter Introduction

	f04 - Simultaneous Linear Equations
	Chapter Introduction

	f06 - Linear Algebra Support Functions
	Chapter Introduction

	f07 - Linear Equations (LAPACK)
	Chapter Introduction

	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	f11 - Sparse Linear Algebra
	Chapter Introduction

	f12 - Large Scale Eigenproblems
	Chapter Introduction

	f16 - NAG Interface to BLAS
	Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	Chapter Introduction

	g02 - Correlation and Regression Analysis
	Chapter Introduction

	g03 - Multivariate Methods
	Chapter Introduction

	g04 - Analysis of Variance
	Chapter Introduction

	g05 - Random Number Generators
	Chapter Introduction

	g07 - Univariate Estimation
	Chapter Introduction

	g08 - Nonparametric Statistics
	Chapter Introduction

	g10 - Smoothing in Statistics
	Chapter Introduction

	g11 - Contingency Table Analysis
	Chapter Introduction

	g12 - Survival Analysis
	Chapter Introduction

	g13 - Time Series Analysis
	Chapter Introduction

	h - Operations Research
	Chapter Introduction

	m01 - Sorting
	Chapter Introduction

	s - Approximations of Special Functions
	Chapter Introduction

	x01 - Mathematical Constants
	Chapter Introduction

	x02 - Machine Constants
	Chapter Introduction

	x04 - Input/Output Utilities
	Chapter Introduction

